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Are connectionist models neurally plausible?

A critical appraisal

M. PAPADATOU-PASTOU*

“Our goal in short is to replace the computer metaphor
with the brain metaphor.”
(Rumelhart, 1989, p.134)

Introduction

In the 1980s a new type of cognitive model began
to receive increasing attention in the neuroscience lit-
erature, with the explosion of interest reaching its
peak in 1986 when Rumelhart, McClelland, and the
PDP Research Group released the locus classicus of
connectionism “Parallel Distributed Processing”.
These new models became variously known under
different names such as connectionist models or net-
works, parallel distributed processing models, or arti-
ficial neural networks. The latter term is indicative of
the fact that connectionism is inspired by information
processing in the brain and attempts to capture the
essential computational properties of the real neu-
ronal elements found in the central nervous system
using simulations of smaller networks of more
abstract units (Plaut et al., 1996; O’Reilly, 1998;
Engelbrecht, 2007).

A connectionist model typically consists of a large
number of processing units - closely analogous to
abstract neurons or groups of neurons - joined
together in a multi-layer pattern of parallel connec-
tions. The units are usually segregated into three
classes: input units, which receive information to be
processed (i.e., the stimulus presented to the model),
output units, where the results of the processing are
to be found (i.e., the model’s response), and units in
between called hidden units (Fig.1). Each unit sums
up information from units in the previous layer, per-
forms a simple computation on this sum and passes
the result to units in the next layer. The influence of a
unit in one layer on a unit in the next layer depends
upon the weight or the strengths of the connections
between units. Connections can be excitatory or
inhibitory — inhibitory connections decrease the acti-
vation of the receiving node, whereas excitatory con-
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nections increase the receiving node’s activity level.
Learning to produce the correct output in response to
a given input is achieved by changing the strength of
connections between the units until the network set-
tles into a stable pattern (for a more detailed descrip-
tion of the architecture of connectionist networks see
McLeod et al.,, 1998; O’Reilly & Munakata, 2000;
Heinke & Mavritsaki, 2009).

Figure 1. A simple connectionist network. (Figure
taken by Bates & Elman, 1993)
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The most appealing aspect of the connectionist
approach lies in the fact that it starts with a model that
incorporates brain-like processing and sees whether
behaviour, which mimics that shown by people,
emerges. That is, connectionist models actually pro-
duce a response to a stimulus, making it possible to
compare at a quantitative level the predictions that the
models make to the behaviour produced by partici-
pants in empirical studies. For example, a model of
reading aloud takes time to generate a response and
this varies with the frequency of the word (McLeod et
al., 1998). If the predictions are wrong the model fails
and vice versa. This is obviously not the case for the
traditional box-and-arrow models of cognitive
processes, which allow only for qualitative predic-
tions. In the case of artificial intelligence models,
modeling of the human cognitive capacities is possi-
ble, but no attempt is made to relate the operations



performed to the way the brain works in a neuronal
level.

Despite the parallels to biological systems, the
neural plausibility of connectionist models has been
widely argued. The central principles of connectionist
models are in actual fact derived from our current
knowledge of computation within the brain, so the
models are justly said to be neurally inspired (McLeod
et al., 1998; Barber & Kuts, 2007). On the other hand,
it is also true that connectionist networks do not repli-
cate all known features of the brain (Seidenberg &
Zevin, 2006), or/and they contain mechanisms that
are biologically or neurologically unrealistic or down-
right false (Morris, 1989; Roy, 2000). One skeptic has
gone even further, claiming that “the only thing neural
networks have in common with the human brain is the
word ‘neural’ 7 (Poggio, 1988).

It looks like the “brain-like structure of connection-
ist architectures” (Clark, 1989) may not be as straight-
forward as it initially appears. Without appropriate
qualification, the claims about elements which have
been termed “brain-like” or “neural-like” have a great
potential to mislead. These claims form the basis of
every attempt to simulate cognitive processes using
connectionist modeling. This being the case, it is of
great interest and methodological importance to
investigate the claims raised by connectionism in a
careful manner.

Processing units - neurons

Let us begin by examining the claim that “a con-
nectionist processing unit is something close to an
abstract neuron” (Rumelhart, 1989). This claim has
aroused a lot of dispute, since “it has always been
very clear to neuroscientists that there is no such
thing as a typical neuron” (Winlow, 1990). As a matter
of fact, twelve different kinds of neurons are to be
found in the neocortex alone, according to
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Churchland and Sejnowski (1994). It is only sensible
that Berkeley (1997) wonders, “just which kind of neu-
ron connectionist processing units are an abstraction
from?” Since the “abstract neurons” employed in con-
nectionist networks are supposed to capture the sig-
nificant features of all neurons, Berkeley further won-
ders how were the selected set of features decided
upon.

Connectionists acknowledge the fact that there
are many different types of neurons, but they claim
that despite the neurons’ bewildering variety in detail,
they perform a common function which is to intergrate
information about the firing of one set of neurons
(their input) and pass information related to this input
(their output) to a new set of neurons. This operation
takes place in three different stages: first, the neuron
receives signals, either excitatory or inhibitory from
other neurons, via synaptic connections onto its den-
drites. If the sum of these signals exceeds a thresh-
old, the neuron fires and this is communicated to
other neurons by a signal passing down its axon. This
signal in turn acts as part of the input to the dendrites
of other neurons.

Connectionist models consist of a number of units
that behave in exactly the same way. As shown in
Figure 2, each line coming into the unit from above
represents an input connection, which may be either
positive or negative. The unit sums the inputs and
passes information about the sum down the output
connections to other units to which it is connected.
Therefore “the functional role of a unit in a connec-
tionist model is the same as that of a classical neu-
ron” (McLeod et al., 1998), as they both pass infor-
mation about the pattern of activity of one set of units
to another set (Crick & Asanuma, 1986). Still, neurons
in the brain are not only highly recurrent (“loops with-
in loops”) but sparsely connected, they also have
accidental features in their connectivity patterns

Figure 2. Three types of neuron. From left to right a spinal motor neuron, a hippocampal pyramidal cell
and a Purkinje cell of the cerebellum. The last figure is a computational unit in a connectionist model.

(Figure taken from MclLeod et al., 1998)
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(Maass et al., 2002).

A related concern to neuronal diversity derives
from the fact that many, if not most, connectionist
models include what is known as a “bias” term, which
is trained at the same time as the connection weights
are trained. Its role is to add a constant amount to the
net input computed by the output unit. Typically all
units in a network will receive input from the bias unit.
However, there is little or no evidence that the most
natural biological equivalents of bias, the threshold
membrane potentials, can be similarly modified
(Berkeley, 1997). Thus, it seems that connectionists
take it upon themselves to add an extra degree of
freedom into their networks - yet this degree of free-
dom lacks any biological justification or defence argu-
ment from the connectionist point of view.

Signal transmission

Another area of discordance is concerned with the
ways of transmitting signals between units or neurons
that are employed by connectionist or biological net-
works, respectively. In connectionist networks the sig-
nals, which are sent via the weighted connections,
take the form of continuous numerical values, where-
as in real neural systems signals are sent in the form
of spiked pulses of signal (Smolensky, 1988). The
connectionists’ account of the matter emphasizes the
fact that the output of a neuron communicates more
than just the fact that it is receiving input: it varies sys-
tematically to convey information about the level of its
input. Information transmission between connection-
ist units is claimed to achieve the same end, again
conveying information about the level of input only in
a different way. Hence, connectionists do not consid-
er this difference to be a decisive objection against
connectionist models, since continuous values can
capture the essential properties of the signals trans-
mitted by the spikes’ pulses.

Berkeley, among others, does not consent to this
being the case and he gives five reasons to back up
his claim (1997). Firstly, he argues that different types
of neurons have different firing patterns. Secondly,
the firing patterns of some neurons are a function of
their recent firing history. Thirdly, some neurons have
oscillatory firing patterns. Fourthly, most neurons
spike randomly, even in the absence of input
(Churchland & Sejnowski, 1994; Maass et al., 2002).
Finally, signals between neurons in biological sys-
tems are sent by more than one medium -synaptic
transmission occurs by both electrical and chemical

means (Getting, 1989). Although it may be possible to
capture at least some aspects of these complexities
with continuous values, Berkeley is sceptical whether
this can be entirely the case. He believes that there
must be at least some functionally significant proper-
ties of the biological systems that are not captured in
connectionist arguments, even though he clearly
avoids being more specific as to name which mecha-
nisms are not captured.

An additional issue that needs to be examined is
the relationship between the signal that is transmitted
and the influence it has upon the receiving neuron,
that is whether it makes it more or less likely to fire.
Dreyfus (1992) briefly describes the work by Lettvin
(1991), which suggests that axon branches may serve
to act as “low pass filters with different cut-off fre-
quencies”, with the precise frequency being depend-
ent upon the physical diameter of the actual axon
branch. Thus, there should be a complex and func-
tionally significant relationship between the frequency
and pattern of neuronal firing and the length and
diameter of the connections between neurons.
However, there is nothing in connectionist systems
that is even remotely similar to such a mechanism.
Moreover, extrasynaptic neuromodulators also affect
synaptic adjustments in a way that can be claimed to
be direct (Levine, 1991), while mechanisms within the
cell convert these signals to long-lasting cellular prop-
erties. Thus, connectionist notions that no other phys-
ical entity directly signals changes to a cell’s behav-
iour is another misconception about the brain.

It is also the case that in standard connectionist
networks individual units from one layer can have a
significant impact on the activation level of particular
units in the next layer. In biological systems, however,
the influence of one neuron upon the state of another
is relatively weak, usually in the order of 1% - 5% of
the firing threshold (Churchland & Sejnowski, 1994).
Connectionists overcome these arguments by refus-
ing to look at the biological system in such detail
—they try to model a brain-like style of processing, but
it is not their intention to simulate every specific detail
of the brain (Plaut & McClelland, 2010; Read et al.,
2010). In the case of this relationship between the sig-
nal that is transmitted and the influence it has upon
the receiving neuron, they argue that this is repre-
sented directly in connectionist models. Namely, the
effect that one unit has on another is determined by
the strength of the connection between them, that is
the weight of the connection.



Representations’ distribution

A different property that connectionist models
putatively share with real neural networks is the fact
that they use distributed representations (e.g.,
McClelland & Rogers, 2003; Conrey et al., 2007).
According to O’Reilly and Farah (1999) evidence for
the brain’s use of distributed representation comes
from observations such as the relatively global effects
of damage to a given functional area. For example,
recognition of all faces is affected in prosopagnosia,
not just some. Other observations are the graceful
nature of degradation (i.e., tissue loss may cause only
mild or moderate impairments) as well as more direct
single-cell recordings. As a matter of fact, in a number
of domains of processing such as motor systems and
facial recognition, analyses of cells’ breadth of tuning
and proportion of active cells suggests that distrib-
uted representation is ubiquitous in the brain (Desi-
mone & Ungerleider, 1989; Georgopoulos, 1990;
Sparks & Mays, 1990).

The above argument is rather problematic. Burton
and Young (1999) claim that there are many ways in
which representations can be distributed. Thus, in
order to use the fact that a connectionist network has
distributed representations as evidence that it is
brain-like, one needs to argue that the particular type
of distributed representations it uses is like the partic-
ular type of distributed representation the brain uses.
Furthermore, most of the evidence presented sug-
gests the use of coarse coding by the brain, not fully
distributed representations. In essence this means
that each representation is coded over a small pro-
portion of the available units, rather than each being
coded equally across the entire system, like typical
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connectionist networks would do. This is an important
distinction, since systems that use “few-unit”, coarse
coded distributed representations behave entirely
unlike systems in which all units are used for each
representation. This again mitigates against the ten-
ability of connectionist claims to biological realism.

More scepticism against connectionist networks
comes from the fact that they are “massively parallel”,
that is each unit of a particular layer is normally
arranged so that it has connections to every unit of
both prior and subsequent layers in the network (Fig.
3). However, there is evidence that suggests that this
is not the case in the brain and that neurons are rather
sparsely connected, as stated above. Churchland
and Sejnowski (1994) in their discussion about the
patterns of connectivity found in brain cortex, note
that “not everything is connected to everything else.
Each cortical neuron is connected to a roughly con-
stant number of neurons, irrespective of brain size,
namely about 3% of the neurons underlying the sur-
rounding millimetre of cortex”. Standard connection-
ist models pay no heed to this particular fact about
neural systems.

An argument that connectionists use to support
their claim of modeling the global features of the cog-
nitive processes that take place in the brain, is that
connectionist models, just like the brain structure, are
layered. Information is processed in the brain by a
flow of activity passing through a sequence of physi-
cally independent structures. This view of the organi-
sation processing in the brain is represented in con-
nectionist models. Figure 4 provides an illustration of
this kind of layered processing that takes place in the
brain in the case of visual perception and how it is
modeled by a connectionist network.

Figure 3. A typical connectionist network, with massively parallel connections between layers of

processing units. (Figure taken from Berkeley, 1997)
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Information Learning

Another area of controversy lies in the way that
connectionist networks learn new information.
Although the mechanisms by which the brain learns
are not fully understood, there is good evidence that
learning involves changing the strength of synaptic
connections between neurons. In connectionist net-
works this mechanism is represented directly by
changing the weight of connections between neurons
in order for learning to be achieved. One of the most
widely used training methods is called backpropaga-
tion (e.g., Gers et al., 2000; O’Reilly & Frank, 2007;
Monaghan, 2008). To use this method one needs a
training set consisting of many examples of input and
their desired outputs for a given task. The weights of
the connections are initially set to random values and
then the members of the training set are repeatedly
exposed to the network.

Figure 4. The layered structure of information pro-
cessing in the brain and connectionist models. Top:
processing of visual information in the brain from retina
to lateral geniculate body to visual cortex. Centre: this
flow conceptualized as transmission of information
through a series of processing layers. Bottom: a con-
nectionist model with three layers of processing units.
(Figure taken from McLeod et al., 1998)
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The values for the input of a member are placed on
the input weight and the output of the net is com-

pared with the desired output for this member. Then
all weights in the net are adjusted slightly in the direc-
tion that would bring the net’s output values closer to
the values for the desired output. After many repeti-
tions of this process the net may learn to produce the
desired output for each input in the training set.

Backpropagation has attracted the most criticism
against the biological plausibility of connectionist net-
works. The reason is that it requires error information
to be propagated backwards through the network. In
a biological system this would correspond to signals
traveling back down the nerve and “there is no evi-
dence that synapses can be used in the reverse direc-
tion” (Hinton & Anderson, 1989). According to the
same authors, it is also clear that real neurons cannot
both propagate an error derivative backwards using a
linear input-output function whilst having to propagate
activity forwards using non-linear processes. This
seems far more problematic than the failure to include
all known neurological detail (for a more detailed
account see Grossberg, 1987)

Conclusions

Overall, connectionist modeling does indeed pro-
vide a forum for brain-style theorizing. However, the
contact with neurophysiology appears to be “more
apparent that real” (Quinlan, 1991). It should be point-
ed out again though, that the connectionists’ intention
is to “offer a general and abstract model of computa-
tional architecture of the brain, to develop algorithms
and procedures well-suited to this architecture and to
explore them as hypotheses about the nature of the
human information-processing system” (Rumelhart,
1989). On the other hand, “if our aim is to understand
the brain, there is little value in designing and evalu-
ating neural networks whose underlying assumptions
about the brain organization are known at the outset
to be false” (Crick, 1989).

Connectionists may have the details wrong but the
important point for present purposes is that there is
no further excuse for ignoring potential constraints on
proposed cognitive architectures. As Crick (1989) has
argued, if connectionists were to take the brain seri-
ously then their models would end up being radically
different to anything that has been developed to date.
Fortunately, there seem to be many researchers in the
connectionist movement who are trying to bring these
systems closer to neural reality (Bates & Elman,
1993). They are heading in the right direction even
though they have a long way to go.



10 ETKE®ANOZ 48, 2011

Summary

M. PAPADATOU-PASTOU: Are connectionist models neurally plausible? A critical appraisal

Connectionist models, a promising new tool in the 1980s for the study of mental and behavioural phenom-
ena as the emergent processes of interconnected networks of simple units, find themselves today at a turning
point. Their very basic principle - the fact that they simulate brain processes- is being questioned, as neuro-
scientists are casting doubt on whether these models involve any degree of biological realism. At the same
time advocates for connectionist models claim that their models capture the essential computational proper-
ties of the central nervous system and put forward the fact that these models make predictions that are com-
parable and in many instances do replicate behaviour at a quantitative level. The present paper addresses this
heated, ongoing debate on the neural plausibility of connectionist models. Such an investigation is of great
interest and methodological importance to all scientists and professionals who study and/or work with the
brain, as the claim for neural plausibility forms the basis of every attempt to simulate and explain mental and
behavioural phenomena using connectionist modeling.

Key words: connectionist modeling, computational modeling, parallel distributed processing, artificial neural
networks, neural plausibility

NepiAnyn

M. MAMAAATOY-TMAZTQY: Eival Ta ouvdeTIOTIKG HOVTEAA CUUBATA HE TA PUOIKE veupwvikd Siktua; Mia
KQITIKY) Bewpnon.

Ta ouvdetioTikd povtéla (connectionist models), yvwotd kat wg ouvdeolakd PovTéAa 1 TEXVNTA VEUPWVL-
kd diktua, avadeixBnkav tn dekaetia Tou 1980 wg éva véo, TTOAA UTIOOXOUEVO EPYAAE(O yia TN PMEAETN YVw-
OTIKWV KAl CUMTEPLPOPIKWY dlepyaatwv. Ta povtéha autd sival eunveuapéva and tny eneepyaocia Twv mnp-
oPOoPLWV OTWG auTr) AauBAvel Xwpa oTov EYKEPAAO KAl ETILXELPOUV VA ATOOVWOOUV OPLOUEVEG BACIKEG UTIO-
AOYLOTIKEG IDIOTNTEG TWV VEUPWVWY TOU KEVIPLKOU VEUPIKOU cuotrjuatog. Ta povtéAa nmpoypaupatiCovrat (1
“ekrtaidevovTal”) pe Tpomo TéTolo wote, dtav elodyovial oe autd epebiouara (T.X. PUATA OE EVECTWTIKO
XPOV0), va Mapdyouv cUUNePLPoPd avtioToLXn HE auTr PUOIKWY TIPOCWNWY (T.X. adploTog Twv Blwv pnud-
TWV). To HEANNOV TWV CUVIETIOTIKWY POVTEAWV BplokeTal Ouwg orjuepa o veupalylkd onueio: H BepeAwydng
apxr] Toug - To Yeyovog 1L mpooopoldlouv Ta QUOIKA veupwvikd diktua - TiBeTal oe enepwtnon, Kabwg veup-
OETIOTAMOVEG AUPLOBNTOUV OTL evowpatwvouv oroloudnirote Baduol Blohoyikd peahoud. H KpITIk eoTid-
Cetal oto Katd doo ol povAadeq enefepyaciag Twv PovTEAWY, ol “KOpBol” 1§ “Habnuatikol veupwveg”, €xouv
MPAYUATL OMOLOTNTEG [E TOUG PUOLKOUG VEUPWVEG Kal, av val, og TIolou eidoug veupwveg potdlouv Kat pe
nolov Tpodmo. Emniong, aokeltal KPLTIKA wg MEOG Tov TEOTO e TOV OTIo(0 Ol TTANPOPOPIEG JLATPEXOUV TA LOV-
TéNa, aA\d Kal Tov TPOTO Kal TO (000G Twv ouvEoewV PETAEU TwV KOUBwY. Ol UTIEPAOTIIOTEG TWV CUVOETL-
OTIKWV HovTéNwY, and tnv ANAn TiAeupd, urtevBupiCouv &TL Ta JOVTEAQ TOUG EVOWUATWVOUV UOVO eKkelveq TIq
1OL19TNTEG TOU VEUPLKOU OUCTHATOG ToU elval onpavTtikég oe emninedo diktUou, Kat OTL oL avTioTolxieg ueTagu
(PUOIKWV Kal VEUPWVIKWY JIKTUWV Bpiokovtal og €va apnpenuévo emninedo yevikeuong. EmumnAgov, mpoBdilouv
eupnpara rnou delxvouv OTlL Ta povigAa prnopouv va kdvouv ipoBAEYeLg oL oroieg elval ouykploleg Kat TIoA-
AEQ POPEQ TAUTOONEG e TNV avEpWTivi) CUMNEPLPopd Oe OoOTIKO emninedo. To mapdv dpbpo culntd TO
Katd ié00 Ta CUVOETIOTIKA HovTéNa elval ouppatd pe Ta uotkd veupwvikd diktua. Autr) n dlepelvnon €xel
TepdoTio evdlapgépov ald kal pebodoloyikry onpacia yia dAoug Toug EMIOTIMOVEG Kal eNMAayyeAUaTieq mou
MeAETOUV 1j/kal SouAeUouv e Tov EYKEPAAO, apoU n veupwviki ouuBatdtnta anoteAel To Bepého k&be and-
TIELPAG TIPOOOMOIWAONG Kal EMEEYNONG VONTIKWY KAl CUUTEPLPOPIKWY PAVOUEVWY LIE TN XPHON TWV HOVIEAWY
QUTWV.
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